Why Do They Do That? –Irrigation

Most of us are familiar with weather and know that it is not consistent every year, and rain doesn’t always come when farmers need it. This is why some large fields resort to using some kind of irrigation system. Even though you may see a large irrigation system while driving down the road, it is helpful to note that most of Iowa’s cropland is not irrigated. According to the USDA, other states outside of the Midwest, such as California, Nebraska, Arkansas, and Idaho, rely more heavily on irrigation systems. This is due to their irregular and infrequent precipitation.

Using this method of irrigation systems to water crops, farmers can control their crops’ water requirements if there is not enough rainfall. Like many things in the agriculture industry, the control of these irrigations systems can be automated and can be done right from the farmer’s phone or tablet. With different technologies, farmers can adjust the water pressure, the amount of water, and more without even being on the field, similar to how you could control your home’s security or temperature with smart technology while being on the road. As advanced as this may seem, these irrigation systems continually advance with the rest of the agriculture industry with solar-powered irrigation systems being implemented more widely in the future.

Photo by Adrianna Calvo on Pexels.com

When deciding what kind of irrigation system to use, farmers have several choices: sprinkler vs. drip and center pivot vs. linear.

sprinkler irrigation system:

This system imitates rainfall by distributing the water above the field surface, allowing it to fall on the crops and soil. All plants on the field should receive the same amount of water, hopefully resulting in similar growth. This system is one of the most popular kinds of irrigation, and you probably have seen them in the fields at one time or another. This system is also similar to what many homeowners use to water their lawns. Like every system, sprinkler irrigation has some advantages and disadvantages. A farmer may decide to go with the sprinkler system because of the reduced cost of overall farm labor and reduced soil erosion. Another farmer may opt out of sprinkler irrigation because of the high initial cost of pipes, motors, and installation, and because of the high water loss due to evaporation.

drip irrigation system:

Compared to a sprinkler system, the drip irrigation system can be more efficient than a sprinkler system because the water is being dripped from a lower point, drop by drop (there is less evaporation water loss). With this kind of system, the soil soaks in the droplets before they can evaporate or be blown away by the wind. The water is applied closer to the roots where it is truly needed. Although drip irrigation may seem like the more beneficial choice, there are some downfalls, including that the water outlets get clogged because they are in direct contact with the ground. These systems also take a lot of training to understand the machine and manage the system.

center-pivot irrigation system:

This type of sprinkler irrigation is just what it sounds like: a mechanical system that moves in a circle with a center point. This machine can also be used to apply fertilizers and pesticides. The chemicals are mixed into the water as the water is sprayed onto the field. This multipurpose system can be used on a variety of crops, including vegetables and fruit trees. The center point is usually a permanent, stationary point where the water is pumped up from an underground well. The long arm of the system stretches across half the field and as it moves in a circle, it waters the entire field. The arm is supported by large wheels that travel across the ground and hold the arm up. If you’ve traveled in a plane over Midwest states like Nebraska, Kansas, and Colorado and looked out the window, you’ve likely noticed the circular fields. Each one of those fields has a center-pivot irrigation system on it.

Photo by Mark Stebnicki on Pexels.com

Linear Irrigation System:

Linear irrigation systems are marketed to irrigate 98% of the field by traveling across the field in a straight line, forward, and reverse working best in square or rectangular fields. This system is another example of a sprinkler system. The water used is either taken from underground or a hose that drags behind the machine’s wheeled cart. In a linear irrigation system, soil compaction is reduced. It is also easier to work in windier conditions, unlike the center-pivot system because they are lower to the ground. Center-pivot systems can work on tall crops like corn. Linear irrigation system are better for shorter crops like alfalfa.

Now that we know what types of irrigation systems are out there, the final question is, why use them? With this kind of technology, crops can be watered in a controlled environment where the lack of rain can be less of a burden on farmers and their yield. Controlling the amount of water applied in a slow and steady manner can lead to less runoff and erosion. Plus, the time that farmers would typically take using more complex kinds of irrigation can now be spent perfecting other areas of the field or farm operation.

Next time you see one of these systems as your driving down the road, now you will have a better idea of what it does! If you’re a farmer, let us know in the comments what works best for you!

~Madison

Hi! My name is Madison Paine and I am the education programs intern at IALF for the next year. I am currently a junior at Iowa State University studying agriculture communications. I grew up on an acreage outside of Maxwell, IA where my love for agriculture first sparked. I am very excited to be here and can’t wait to see what this next year all entails!

Soil and Water Conservation Practices – What are They Doing?

Agricultural run-off has been a big talking point in recent years. Many people know bits and pieces of the conversation, but the scope of the issue can be a bit complicated. There are many factors and smaller issues that need attention. So, what is the deal with run-off?

As you may know, Iowa is under national pressure to reduce the amount of nutrients washing off of our land and into the rivers, and ultimately into the Gulf of Mexico. The main issue at the Gulf is hypoxia, which basically means there are too many of specific kinds of nutrients, which promotes algae growth, which in turn chokes out other organisms like fish. Clearly this is not ideal.

The main nutrient that gets the press is nitrogen. Nitrates in the water has been one of the bigger issues people talk about. The main concerns are removing nitrates from drinking water (primarily because of the blue baby syndrome that was a larger problem in the 1950s), issues of environmental stability, and even cost of wasted nutrients on the farm associated with nutrient loss from the field.

The other nutrient we are now paying attention to is phosphorus. This one isn’t quite as popular to talk about in the public space, but it impacts aquatic ecosystems similarly to nitrogen. They both support the growth of algae, sometimes to the point of using up all of the oxygen in the water and killing off native fish.

Nitrogen and phosphorus (along with potassium) are two of the three main macronutrients that plants need to grow. Nitrogen tends to be the nutrient that is applied most to Iowa farm fields, because of how important it is to crop growth. These are naturally occurring elements in the soil and play a vital role in life on Earth.

However, we’ve come to this issue. Aquatic ecosystems are being negatively impacted by these nutrients. Farmers pay to apply these nutrients to their crops and don’t want to lose their investment. How can we reduce those nutrient loads in our waterways and keep nutrients and soil where they belong?

The good news is those questions are being asked, and many programs are underway. The more difficult news is that there is not a one-size-fits-all answer either for fields or for the nutrients themselves.

Let’s back up a little bit and talk about how these nutrients interact with the soil and water. Soil particles are made up of sheets of molecules that when bonded together create an overall negative charge. This works out pretty well because most nutrients have a positive charge in their plant-available form. This means that most nutrients bond with the soil and stay available to the plants living in that soil. Phosphorus is one of these nutrients.

But then we get to nitrogen. It sometimes is in a form with a positive charge (NH4+), but it doesn’t really like to stay like that forever. It gets broken down or may volatilize into a different form. It could be lost into the atmosphere, or it could become NO3-, which is nitrate. When nitrogen changes into its nitrate form, it is no longer attracted to the negatively charged soil and ends up leaching its way through the soil profile along with ground water.

Since nitrogen moves with ground water, the primary way it gets around is through tile lines. Field tile is commonly used in Iowa to help keep excess water from the field. If soil is too waterlogged, the crops may struggle. Thus, Iowa farmers have been tiling their fields for decades to give the water a quick and easy way to escape the field.

7

Iowa Learning Farms display highlighting differences between nitrogen and phosphorus loss from a field and how tile lines play a part.

Both of these nutrients cost money to apply. They are important for crop growth. The soil that can hold them is also valuable. Farmers don’t want them to leave their field partially because they don’t want to lose that value, and also because of the negative impacts too much of them can have on other ecosystems. But because these two things come into the waterways in different ways – phosphorus comes into the water with soil that has eroded, and nitrogen through the water itself – they have to be managed in different ways.

So what are some ideas?

There are some practices that can be built or installed to help modify the landscape or the way the elements interact with it. These can cost real money, but in some cases, government programs or even corporate incentive programs can help fund their start up. These can be largely grouped as permanent structures

One cool new idea is saturated buffers. This system uses both buffer strips and tile lines. Buffer strips are areas of natural plants parallel to ditches and waterways left fallow to help filter runoff. Conventional tile systems are installed 3-4 feet deep to catch and take extra water from the field and into a near ditch or waterway. The outlets of these tile lines have conventionally been placed directly into a ditch or waterway uninhibited. However, the idea with a saturated buffer is that if you place the tile line parallel to the ditch or waterway, the soil and plant growth in the buffer strip will filter the soil particles and nutrients in the water before it reaches the waterway. The Agricultural Research Service claims this system filters an average of 42% of the nitrate load from the water.

The saturated buffer idea is similar to the idea of bioreactors. Bioreactors also help filter nutrients from tile line outlets, but with artificially created biological processes. Essentially a pit is filled with organic, carbon-rich materials, like woodchips, where microscopic life can flourish. These microorganisms help break down and filter nitrates from the water introduced to the system. This is a slightly older technology than saturated buffers, but is costlier to implement and will need redone roughly every 15 years.

Buffer strips and bioreactors are considered “edge of field” practices. This means that they don’t need to take up area in a field, but instead use the less productive or less safe land to farm near a water boundary. Though it still may be a hard sell to pull that land out of production, it is argued that those areas likely aren’t making the farmer much money, and proper water management may help make other areas better. Since these practices help filter ground water before it reaches the stream, they are some promising pieces in removing excess nitrates.

Terraces are another way farmers can make changes to the land to slow water runoff. You may have seen pictures of farms in other parts of the world where terraces are cut like stairsteps into a large hill so that the crops can be grown on flat land. Here in Iowa, we use a different kind of terrace that essentially builds up a smaller hill on a broad hill to slow water running off the slope. When the water runoff is slowed, soil particles and nutrients can have more time to settle out in the grassed front and back-slopes of the terrace. For more info on terraces, check out our previous blog post here, Clean Water Iowa, or the Natural Resource Conservation Service.

Avoca Terraces

Terraces placed on the slope protect the soil from erosion in Avoca, Iowa.

Grassed drainageways or grassed waterways are a common sight to see around the hills of Iowa. These are natural waterways that farmers leave in native grasses to slow water flow, intercept soil runoff (to decrease P loss), and hopefully the plant life will also absorb excess nutrients in the water (to decrease N loss). If not left in a grassed waterway, these areas of the field would be susceptible to rill and gully erosion.

There are also cropping practices that can impact soil and water conservation. These can be opted into or out of any given season.

Another very cool idea is cover crops. We’ve written previous blogs about cover crops, but in a nutshell, cover crops are plants grown in a farmer’s field during the off-season (fall to spring) to keep the soil covered and protected during a time it would usually be left bare. Cover crops protect the soil surface from wind and rain, the roots help improve soil structure, they add organic material that makes soil healthier, hold nutrients near the soil surface, help suppress weed growth, and do lots of other cool things. Because cover crops help use nutrients and protect the soil, they can help with both nitrogen and phosphorus loss.

IMG_0934

Soybeans sprouting through a terminated rye cover crop on a strip-tilled farm near Algona, IA.

Our grandfathers and great-grandfathers broke the land using moldboard plows year after year. Eventually we realized that even though tillage can help prevent soil compaction and help with weed control, it has a negative impact on soil structure and makes soil more susceptible to erosion. Because of this, some farmers swung the pendulum to the opposite side of the spectrum and went no-till. This means they never till the soil on their fields. Instead, they are more dependent on herbicide weed control, and use crop rotations and cover crops to help mitigate soil compaction. When the soil is not tilled, the structure becomes stronger, and previous years’ crop roots and stems help protect the soil. This helps prevent soil from washing off the field, thus preventing phosphorus loss.

IMG_0929

This is a field that has been strip-tilled. Strip tillage is a form of conservation tillage where only part of the field is tilled.

If we think of no-till and moldboard plowing as the two far swings of the pendulum in terms of tillage, likely the middle of the road or slightly more toward no-till would be conservation tillage. This is the idea that a field can benefit from tillage for compaction or weed control issues, but can also benefit from increased soil structure and added organic material from less tillage. These practices vary greatly, but likely include less of the topsoil being broken up.

Contour farming is a way to plant a field so that the rows follow around the hills. This means that when the water runs down the hill, it would run perpendicular into the rows instead of parallel between the rows. This should slow the flow of water, giving soil time to settle out of the water before it continues down the hill.

There are many options available for farmers and landowners in the area of soil and water conservation. More research is being done every day for the best and newest ways to decrease risk, decrease cost, and maximize benefit. Because of the nature of these practices (particularly permanent structures and cover crops) is that it costs real money up front to earn intrinsic value later (i.e.: will not earn them a paycheck), it can be difficult to implement new things. However, farmers recognize the good that these things do, and are interested in new cost-share and grant opportunities that can help them do better with what they have.

What do you think the next big idea will be? Maybe you’ll be right!

-Chrissy

Macronutrients in Crop Production

elements in the environment

When growing crops of any type, it’s important to understand the required inputs in order to receive the desired yields. One of these inputs, arguably the most important and critical one, revolves around nutrient management. All plants have these requirements, whether it be crops grown for biofuels, fruit production, or landscape ornamentals. Each plant needs various amounts of nutrients, which can be used to classify them (by quantity) into macro or micro nutrients. It’s important to remember that each one is vital for plant growth, simply required in different doses. As a sidenote – this blog is going to be mainly focused upon corn production, but all of these elements are necessary for any plant you’re trying to grow! First I have a couple questions to spark your curiosity about nutrients in plants…    

  • A plant can be deficient in oxygen, how is that possible?
  • Plants need calcium just like humans do. If it doesn’t go towards bone and teeth strength, then what’s its purpose?

Macronutrients

Let’s start with the big three: carbon, hydrogen, and oxygen. If you’re reading a fertilizer label, they don’t typically advertise for these elements. So, where do plants take them from? Why are they necessary for plant life? Should I be worried that my garden isn’t receiving enough hydrogen? The simple answer is that no one should be concerned about their plants being nutrient deficient in C, H, or O, as long as the plants are surrounded by air!

Carbon (C) – Thanks to many fields of science, we know that carbon is the base for life on Earth! This means that if plants are going to continue to be alive, they must obtain and maintain C. In more direct terms, plants produce and uses chains of carbon with other atoms called carbohydrates, lipids, proteins, and nucleic acids. But what happens if the plant is unable to take in carbon? This would be a very unfavorable scenario for the plant, especially since carbon is essential to photosynthesis. More specifically, without carbon (in the carbon dioxide form) the Calvin cycle wouldn’t occur. This means there’s no G3P, which helps make glucose, and without energy the plant cannot continue to live.

calvin cycle.png

This depicts the Calvin cycle in photosynthesis. Diagram from Khan Academy

Hydrogen (H) – Whenever I think of elemental hydrogen, I don’t normally think of it as a nutrient. I don’t directly eat anything that is marketed as “high in hydrogen”, so how could a plant use it? To start off with, every living organism on Earth needs water (H₂O) to live. Plants use water to obtain hydrogen atoms when splitting H₂O molecules through the light reaction of photosynthesis. The hydrogen ion is then used to create NADPH, which is a crucial ingredient in the Calvin cycle. If a plant is missing this chemical compound, then photosynthesis would cease and the plant would die.

z scheme.png

This shows the light-dependent reactions in photosynthesis, commonly referred to as the z scheme. Image from LibreTexts

Oxygen (O) – Wait a minute – oxygen is a product of photosynthesis, why would a plant need to take in oxygen too? In order to break down food through aerobic respiration, there must be oxygen present. Yes that’s right, plants respire just like humans do! Cells within leaves and stems obtain oxygen atoms that are a product of photosynthesis. However, cells found in areas that aren’t photosynthetically active must find oxygen elsewhere. To solve this issue, roots are able to take in O₂ from the air between soil particles. If the ground is saturated to capacity, then the roots cannot take up oxygen in the gas state. If the area is flooded for longer than 72 hours, it’s likely the plant will run out of oxygen and not recover.

photosynthesis.JPG

The chemical equation for photosynthesis.

Nitrogen (N) – This is a much more commonly discussed nutrient, especially since it has a huge correlation to high yields in corn production. If you were to walk into a farmer’s field, you would be surrounded by nitrogen in many forms! N₂ is a gas found in the air, whereas NO₃⁻, NH₄⁺, and NH₃ are compounds found in the soil. But if nitrogen is found in the air, why can’t corn absorb it like carbon or oxygen? This is because corn can only take up nitrogen when it’s in a nitrate form, which can be found in solutions and attached to soil particles! When taking a closer look at NO₃⁻, it’s more prone to being lost to the environment due to its negative charge. Soil naturally has a negative charge, which means that a nitrate is more likely to move elsewhere in the environment than wait around to be absorbed by a plant. This is why many agriculturists use anhydrous  ammonia as a N fertilizer, because it contains NH₃ and not NO₃⁻. Overtime soil microorganisms will convert ammonia to a plant available nitrate. Why is nitrogen so important in corn physiology? N is essential to grain fill and development. This means that if the plant is deficient in nitrogen, the kernels and ear won’t fill to their genetic potential. A common symptom of N deficiency is a yellowing midrib on a lower leaf.

nitrogen d.jpg

Nitrogen deficiency in corn. Photo from SDSU Extension

Phosphorus (P) – This is another very important macronutrient! In a similar respect to nitrogen, plants are unable to absorb and utilize the elemental form of P. This creates a problem in fields, because P is most commonly found in a plant unavailable form! Luckily, roots have a symbiotic relationship with Mycorrhizal fungi which are able to turn P into a more usable form. Corn can easily uptake phosphates, and the most common compounds are H₂PO₄⁻ and HPO₄²⁻. Since phosphates have negative charges, they are more prone to leaving the soil than the elemental form (similar to nitrates). This is why synthetic fertilizers that contain significant amounts of phosphorus are delivered in a P₂O₅ compound. Why is phosphorus so important in corn physiology? P is directly correlated to crop maturity, yields, and overall plant growth. More specifically phosphorus is a huge makeup of sugar phosphates, which directly affects ATP. Energy transfer with ATP is crucial, due to it’s role in both RNA and DNA. A lack in P will affect the overall efficiency of any plant. Phosphorus deficiency in corn appears in older leaves and starts as a purple hue. An increase in severity will turn leaf margins brown.

phosphorus d

Phosphorus deficiency in corn. Image from Channel.

Potassium (K) – When applying synthetic fertilizers, it’s common to see potassium in the K₂O form. However, this form is not immediately available to plants. Plants can only take up K+ when it’s in a solution. This form differs from the available compounds of N and P, since potassium is a cationWhy is potassium so important in corn physiology? A deficiency in K can have a multitude of negative affects upon the plant. This could be seen as an increase in susceptibility to drought, temperature stressors, and pests. Agronomists refer to K as “the quality nutrient”, meaning there’s a direct connection to traits like seed vigor, size, color, and shape. To be more specific, potassium helps build cellulose, increase protein content, maintain turgor, and move sugars and starches throughout the plant’s vascular system. K deficiency symptoms start as a yellowing of leaf margins on older leaves, and an increase in severity turns the pale color to a brown necrosis.

K d.jpg

Potassium deficiency in corn. Photo from Thompsons.

Secondary Macronutrients

There are three elements that fall under this category, as they’re needed in higher quantities than micronutrients but lesser amounts than N, P, and K.

Calcium (Ca) – Calcium deficiencies are most common in sandy and/or acidic soils, since the Ca ions can be leached through the soil profile. Similarly to potassium, Ca²⁺ can only be imbibed by plants when in a soil solution. Why is calcium so important in corn physiology? Ca holds a vital role in the creation of cell walls and membranes. Calcium deficiency symptoms are visible in new growth, so in corn this would be around the growing point. It typically appears as a yellowing color, slowed growth, and leaf tips sticking together.

Ca d.jpg

Calcium deficiency in corn. Image from Crop Nutrition.

Magnesium (Mg) – Without Mg, a plant would not be able to photosynthesize. This element is a sizable component within chlorophyll molecules, which is 100% necessary for capturing the sunlight’s energy! Additionally, Mg serves as a phosphorus carrier. Simply put –  if there’s not enough Magnesium then the plant would be unable to uptake P, even if it was available in the soil! Mg²⁺ is the plant available form, and can be heavily affected by the pH and sandiness of soils. Mg deficiencies are first seen in older and lower leaves, starting as a purple interveinal discoloration.

Mg deficiency.jpg

Magnesium deficiency in corn. Photo from The Mosaic Company.

Sulfur (S) – The last, but certainly not least, macronutrient can be absorbed both through the roots and stomata openings. In the environment, sulfur is commonly found in the air as SO₂ and within soil solutions as SO₄²⁻. Unlike the previous secondary macronutrients, this one is taken up as an anion as opposed to a cation. Due to the negative charge on a sulfate molecule, it is mobile in the ground (just like nitrate or phosphate) and can be leached through the soil profile. Why is sulfur so important in corn physiology? Without adequate S, some amino acids and proteins would be unable to synthesize. Sulfur also has a connection to winter hardiness, which is a major trait in certain crops. S deficiency in corn appears as a general yellowing of younger leaves, starting between veins but widening to encompass the entire leaf with increasing severity.

SulfurDef_SF.jpg

Sulfur deficiency in corn. Image from Successful Farming.

This is merely a glimpse into some of the chemical factors and management systems that a row crop grower oversees each and every year. If you liked this blog or learned something new from it, let us know! Or maybe if you’d like to see a similar breakdown of micronutrients too? Either way I love writing about agronomic science and can’t wait to share another blog with you all!

-Rosie

 

What Do They Mean? Corn Vocabulary

As with many industries, there’s lots of jargon and learned vocabulary in agriculture. We’ve spent some time unpacking cattle-related vocabulary in previous blog posts, which you can find here, here, and here. However, recently I had an interaction where I was using some corn-related jargon and had to back up and explain what I meant. That made me realize how many pieces of the corn industry have vocab words many people don’t know! Here’s an outline of some of the big terms and what they mean.

IMG_5541

Maize: Maize just means corn! For our international friends, maize may actually be the preferred term.

Husk: The husk of a corn plant is the leaves that grow around and protect the ear. When we buy fresh sweet corn, the husks are green and pliable. When farmers harvest their field corn in the fall, the husks are brown, dry, and brittle.

Husk can also be a verb and refer to when someone removes the husk from corn before they use it. People may also say they “shuck” corn when they do this.

Stalk: The stalk is the main stem of the plant. Some corn plants will grow up to 8 feet tall and most of that height is from the stalk.

Tassel: The tassel is the male flower portion of the corn plant. The corn plant is interesting because it has both male and female flower parts, but they are not part of the same flower. The tassel grows out of the top of the plant, and the female part of the flower (the ear) grows nestled between the leaves and stalk of the plant.

IMG_5356

Detasseling: Many people have had jobs detasseling corn. As it sounds, it means removing the tassel from the plant! This is not done on every farm, however. This is only done when farmers are growing corn that will be used for seed to plant new fields. Farmers sometimes cross-breed two different types of corn and want to make sure the cross happens correctly. They contract with seed companies and those companies provide the genetics for growing this seed corn.

When farmers or researchers are crossbreeding varieties like this, they will plant a small amount of “male rows” that will keep their tassels, and a larger amount of “female rows” that will have their tassels removed. This ensures the ears of the female rows are only being pollinated by the tassels on the male rows. This is how we get hybrid plants!

Conservation till: Tillage has historically been used as a way to warm up the soil, create a nice seedbed for seed-to-soil contact, reduce soil compaction, and control weeds. However, we now know that tillage also increases erosion and negatively impacts the natural soil structure. Conservation tillage is a relatively new idea for how to get the best of both worlds. Maybe a farmer will till only where they plant their seed or will use a type of tillage that doesn’t disturb as much of the soil as conventional methods. There are lots of conservation tillage options.

No-till: No-till is another method of field management, but in this method, they don’t till at all! Farmers who don’t till may use a grain drill fitted on their planter to plant their seeds and may be more dependent on chemical weed control. However, they will gain benefits of reduced erosion (benefiting water quality) and see an improvement in soil health.

_MG_8175

Trash: If you hear a farmer talk about trash on their field, you may think they have a littering problem. But likely, they are just talking about leftover plant residue from previous years. In fact, planters can have angled, toothed discs that help clear the soil of this trash to ensure the seed gets good soil contact. Though these are formally called row cleaners, these discs are sometimes called trash wheels or trash whippers.

Silage: Silage is an interesting corn term. Corn silage is harvested differently than the grain you may see at a grain cooperative. Silage is the entire corn plant that is harvested while green in the summer. The whole plant is chopped up and held in an airtight container (like a silo, silage bag, or silage pit) to ferment. It is then stored and used as cattle feed throughout the year. It smells amazing, and cattle love it because the fermentation makes it slightly sweet.

Silo: A silo is a tall, metal, cement, or clay structure originally used to ferment silage. Though silos aren’t as popular as they used to be (many farmers today use silage pits or silage bags), they are a popular addition to farm scenes in storybooks.

Side-dress: This term doesn’t mean anything about clothes. It has to do with fertilizing! It has become clear that for both financial and environmental reasons, it is important to put fertilizer where it will be safe from the elements and actually reach the crop when the crop needs it.

This is where side-dressing comes in. This is the term used for the placement of fertilizer that is two inches beside and two inches below the seed. Farmers may side-dress nitrogen shortly after (or even during) planting, to make sure that that nitrogen is there for the plant as soon as those roots start to grow.

Anhydrous: Nitrogen is the most limiting nutrient for corn. Anhydrous ammonia is the most affordable form of this nutrient for farmers to use. It comes in large tanks that you may see at cooperatives or in fields. You may hear farmers talk about seeing the anhydrous tanks out or getting anhydrous on their fields. They just mean nitrogen fertilizer!

IMG_4962

Sprayer: A sprayer is a large piece of equipment that helps farmers spray their fields for weeds or pests. They have tall, skinny wheels, and a very high clearance, so they can be driven through corn fields even when the crop is fully grown. The boom on the sprayer can be raised and lowered, the nozzles can be changed for different chemical applications, and applications can even be altered while the machine is turning!

VRT or Variable Rate Technology: VRT is a really cool technology that is part of the precision agriculture movement. It essentially means that nutrients, pesticides, or other applications are only applied at the exact place where they are needed. Variable Rate Technology helps with this by reading maps and following GPS signals to understand things such as one spot in a field needing less nitrogen than another, and will adjust the rate applied to the field accordingly.

Combine: A combine is a machine that harvests the corn crop. To harvest corn, a combine uses a corn header, which looks like it has big teeth or witch-y fingers. The row of corn is guided in between the fingers, the plant is cut off and guided inside the machine, where the ear is picked, husked, and the kernels are shelled, or knocked loose from the cob. Then, the kernels are stored in the hopper, and the rest of the plant material is put back onto the field.

_MG_8630

Grain bin: A grain bin is a big, round, metal, corrugated structure that houses grain. Though not every farmer has a grain bin, they can give a farmer flexibility of when they can sell their crop. Without a grain bin or similar grain storage facility, a farmer would have to sell their grain as soon as they harvested it or pay to have someone else store it for them.

_MG_8623

Stover: This is what we call all of the corn plant material that is left on the field after harvest. This is primarily the dried stalk and leaves of the plant. The plant material can protect the soil from the elements and provides extra organic material to the soil (which translates into healthier soil with more nutrients).

Dock: If a farmer goes to sell their corn at a cooperative and it is damaged, contains inert material (like rocks or weed seed), or is too wet, their price may be docked. Naturally, farmers don’t want that, so they work to harvest and sell high-quality corn.

 

Are there any other terms you’ve been wondering about? Let us know, and you might see it in a future blog!

-Chrissy

6 Reasons Farmers Use Cover Crops

There is a challenge that farmers are faced with every day of their career—how do we protect the land we work on? Farmers work with the land everyday of their lives and work to protect and restore the land for future generations. They understand how the land provides for them—after all, without taking care of the land they work they would not be able to grow a product, such as corn and soybeans, and be able to make a profit for their livelihood. One way farmers work to protect the land is through cover crops.

What is a cover crop? This is a plant that is grown in fields to protect land quality for the future. There are many benefits of implementing the use of cover crops—and here are 6 reasons farmers use cover crops in their operation.sloans-cover-crop-in-corn-stubble

1.)Soil Erosion: One thing I will always remember from my American History lesson of the Dust Bowl is that bare ground is not the answer. Open topsoil is something to avoid in farming practices. Wind and water can carry the soil away through erosion. My dad always said that we can’t rebuild the soil, and he’s right—it takes many years to produce organic matter that makes up Iowa’s rich topsoil. By planting cover crops we help stabilize the soil and protect the topsoil layer by not exposing it to erosion by wind and water.

2.)Nutrient Management: Cover crops are a great way to add valuable nutrients back to the soil. Not only that but cover crops also add back organic matter to the soil as they decompose. In my agronomy class at Iowa State University, I am learning how certain types of legume plants have the ability to ‘fix’ nitrogen in the soil, such as hairy vetch and winter peas. Nitrogen is an essential element in plant growth. By adding in certain cover crops we are also adding in ways to produce nitrogen. Adding in nutrients is not the only benefit, but also balancing nutrients in the soil is a great perk of cover crops too. Adding in certain cover crops, such as non-legumes cover crops (radishes and rye), also have the ability to tie up the nutrients and prevent them from runoff or leaching. Which leads us into our next reason, water quality.

3.)Water Quality: With nitrogen in the soil also comes nitrogen runoff—both which farmers work towards maintaining. Our water streams are easily exposed to nitrogen runoff and other pollution sources. Not only do some cover crops help produce nitrogen, but others like, radishes and rye, also work to lock in nutrients and keep them from producing runoff or leaching. If you think about it, cover crops work as an extra filter system on fields.

4.)Biodiversity: Not only are farmers introducing a new plant onto these fields, they also introduce new interactions of all types of life. Cover crops bring in new habitats, they bring in beneficial or repelling insects, they attract wildlife, and provide protection against wind and water erosion. Creating an area of diverse species only boosts the circle of life and provides new opportunities to grow.

5.)Weed Suppression: Competition is a real thing in the plant world and farmers use cover crops as a way to eliminate weeds from their fields. Roots of cover crops extend deep down into the soil to take up any nutrients or water available. While doing so they also ‘weed’ out other weeds (no pun intended) for those nutrients. Not only do cover crops compete with weeds below the soil surface, but they also compete above the surface for sunlight and space. The competition from cover crops is too stressful for the weeds to handle, making it easy for farmers to have complete weed control.

6.)Green Pasture: Some farmers who also have cattle also have the option of grazing their cattle on the cover crop fields. Its just another way farmers can save feed costs. Cattle love to graze on certain forages, especially crops like clover, radish tops, and rye. Not only can the farmer feed his cattle, but he can also fertilize his fields in the process. The cattle’s manure makes a great source of fertilizer—so basically it’s a two for one deal here.screen-shot-2017-02-07-at-11-47-14-am

There are many reasons why farmers use cover crops—each reason presents an opportunity to improve soil and land quality for the future. Now you may wonder why not all farmers use cover crops. Well even though there are benefits there are also challenges. Cost is a big challenge facing farmers and one of the key reasons that they do not use them. Although cost takes a toll in the present, the benefits can outweigh the costs for the future. For example adding in nutrients and managing weeds work to boost yields, not to mention protecting the topsoil works to help plant growth too. A farmer may be faced with many challenges each day, but they also know how they can work to make the best decision for their operation as well as for the land to be worked on in the future.

-Hannah Pagel