Why do they do that? Anhydrous

d09a6db478d5ee3a96d0f195fd9bab80.0.jpg

Early in the spring and late in the fall it is common to see tractors pulling large white tanks across bare farm fields. So, what are these strange white tanks? What’s in them and why is it applied to fields?

They are anhydrous tanks filled with anhydrous ammonia (NH3) – one of the most efficient and widely used sources of nitrogen fertilizer for agricultural crops like as corn and wheat.

Nitrogen is one of the 17 essential elements required for plant growth. Nitrogen is most commonly found in the atmosphere making up approximately 78% of the air that we breathe. But in the air it is in the form of N2 which is not available to plants to use. Nitrogen is part of chlorophyll which makes plants green and allows them to use sunlight to produce sugars (food) from oxygen and carbon dioxide through photosynthesis. Nitrogen supports strong vegetative plant growth, which is vital for good fruit and seed development.

Plants use nitrogen by absorbing either nitrate (NO3) or ammonium (NH4) ions through their roots. Soybeans and other legume plants can convert atmospheric nitrogen into a usable form because of nitrogen fixing bacteria on their root nodules. Other plants, like corn, need to have an ample supply of available nitrogen in the soil. Farmers can add nitrogen to fields in the form of livestock manure, granular urea, liquid nitrogen (UAN solution), and anhydrous ammonia.

20190319_112831

When making environmentally and economically sustainable decisions about fertilizers, farmers consider the 4Rs best management practices. This helps them select the right fertilizer source and apply it at the right rate, right time, and right placement in the soil.

Anhydrous ammonia is often a preferred nitrogen source for many reasons. It is more concentrated than other forms of nitrogen, containing 82% nitrogen. It is readily available, because it is used in the manufacturing process of other nitrogen fertilizers. It can be applied long before the crop is planted. It is usually the most economical option as well.

Farmers store and transport anhydrous ammonia in liquid form in pressurized tanks. Using an anhydrous applicator pulled by a tractor, the high-pressure liquid converts to a liquid-gas mixture as the pressure drops while traveling from the tank to the knife outlet on the applicator. The knife slices the soil and injects the fertilizer 6 to 8 inches into the soil.

Once in the ground, the ammonia (NH3) ions react with moisture in the soil and convert to ammonium (NH4). Ammonium ions are very stable in the soil. They carry a positive charge and are bonded to negatively charged soil particles like clay and organic matter. These ammonium ions can be taken in by plants and used directly in proteins. Over time, the ammonium converts to nitrate (NO3) which is the form of nitrogen most used by plants for growth and development. Nitrate does not bond to soil like ammonium does and could leach out of the soil and into waterways. Nitrogen fertilizer stabilizers are often added to anhydrous ammonia before application to slow the conversion of ammonium to nitrate, thus helping to reduce nitrogen loss from leaching.

VideoCapture_20190318-205444

Because of the stability of anhydrous ammonia (and converting to ammonium) it can be applied in the fall with less potential to leach, volatilize, or to be lost in water runoff than other nitrogen fertilizers. Cooler soil temperatures help keep the ammonium ion stable and so farmers try to apply it in the fall after the soil temperature drops below 50°F. If applied in the spring, it is best to apply it at least 3-5 days before planting to avoid damaging seeds and emerging roots.

Good nitrogen management is critical for growing healthy plants, good yields, and a profitable farm business. Farmers consider crop nutrient requirements, results of soil tests, soil conditions, weather, cost, time, and equipment available before choosing a fertilizer program that is the best fit for their operation.

-Cindy

3 thoughts on “Why do they do that? Anhydrous

  1. Pingback: Macronutrients in Crop Production | Iowa Agriculture Literacy

  2. Pingback: Why Do They Do That? Farmers Applying Chemicals | Iowa Agriculture Literacy

  3. Pingback: Why Do Farmers Use Anhydrous? - Daniel's Blog

Leave a comment